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-ABSTRACT-

Several years ago David Marples (1976) proposed an algorithm for deri-
vation of simultaneous equations in the solution of Mechanics problems.
Although the original intent of this algorithm was to assist his under-
graduate students at Cambridge in solving applied mathematics problems,
it has also proven itself a powerful tool in the MECHO automatic pro-
blem solving system (Bundy et al, 1978, 1979). This paper will briefly
discuss the Marples’ algorithm and demonstrate its use with two mechan-
ics problems. Parts of traces of four humans solving the same problems
will be given. Adjustments in the MECHO program are made to show how
close the Marples' algorithm can fit the data of the human subjects.
Brief concluding comments are made on modelling human behavior with a
rule-based Tanguage.

I. INTRODUCTION

David Marples (1976) proposed an algorithm for production of simultan-
eous ‘equations in the solution of mechanics problems. This algorithm
was originally introduced in his tutorial sessions at Cambridge and was
intended to help the students produce a sufficient number of independent
simultaneous equations to solve mechanics problems. The technique is
general and goal driven. It has been adopted as part of the MECHO auto-
matic problem solver.

In Section II, the algorithm will be explained and compared with The
General Problem Solver (Newell & Simon, 1963, 13972). Two problems, a
pulley problem.and a distance/rate/time problem will be introduced and
the MECHO solution of each of these problems presented.

In Section III, parts of protocols of four subjects will be presented,
and in Section IV, logically justified adjustments will be made to the
Marples' algorithm in an attempt to produce a trace similar to the
human protocol. Section V will present some concluding comments.

I1. THE MARPLES' ALGORITHM

The Marples' algorithm is goal driven. It takes the goal or unknown to
be solved for in a problem and searches back through the givens of the
problem in an attempt to find an equation solving for the unknown in
terms of the givens. When this is impossible, it creates intermediate
unknowns, or subgoals, that will solve for the unknown and then attempts
to solve for the dintermediate unknowns in terms of the givens of the
problem.
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To see how this might be done in the solving of applied mathematics
problems, consider the usual role of equations in solving a problem:

Equation V=U+A*T for constant accelerations of an object over

a time period

1. U is the initial velocity of the time period

2. V is the final velocity of the time period

3. A is the constant acceleration

4. T is the length of the time period
If one of V, U, A, or T is the unknown of the problem, the Marples'
algorithm tries to assert the equation V=U+A*T by finding values in
the "givens" of the problem for the other three variables. If it can
only ﬁwza values for one or two of the three it will then assert the
equation, 1ist the one or two values it has plus the original unknown
of the problem as “"given" and begin a new search for another (indepen-
dent) equation with the variable it couldn't find as the unknown. And
so the process continues until all the new unknowns can be determined
from the givens of the problem.

qqm first part of the implementation of Marples' algorithm is a "“focus-
sing” algorithm that attempts to direct the Marples' algorithm to a set
of equations relevant to reducing the “"givens-goal difference". For
example, if the final velocity V was the unknown in the problem situation
above then a search would start to find out what V was: namely, the
“final velocity" of a "particle or object" during a "time". When V was
thus @amzﬁﬁﬁwma as the final velocity of an object during a time period,
equations relevant to this situation would be identified first and a
queue of these equations prepared and tested for possible given-goal
reduction. Thus the Marples' algorithm would not search through all
possible equations that had a V unknown but only those relevant to the
particular unknown situation.

Consider now as examples of the running Marples' algorithm two problems
from different areas of mechanics, a pulley and a distance/rate/time
problem.
>.5m: of 12 stone and a weight of 10 stone are connected by a
1ight rope passing over a pulley. Find the acceleration of this
man. (Palmer and Snell, 1956).

End 3
LINE1l + LINE2 = STRING
LINEL with TENSION] —3 ¢——LINE2 with TENSION2
END 1 END 2
with- ACCELERATION1 _ vm _ _vm _ with ACCELERATIONZ2

FIGURE 1 A representation of the entities created by the pulley schemata.
TENSION1 = TENSION2 and ACCELI = ACCEL2 by schema inferencing.




LUGER-3

First, two objects, the man and a weight, are identified as connected

to the rope hanging over the pulley, each object is assigned a mass and
an acceleration in a direction (c.f. Figure 1). The acceleration of the
man, say Al, is identified as the sought unknown. The focussing algor-
ithm first identifies the unknown Al as the acceleration of the man
during a time period. Al is "bound" to the situation and a queue of
possible equations examined that relate Al to the givens. This list is
examined and all equations rejected because they cannot solve for Al
without introducing new unknowns. The 1ist is then reexamined and new
unknowns allowed. The "resolution of forces” equation F=M*A (c.f.
appendix) is the first in the queue and it is asserted. Originally A
was unknown, M was found to be the mass of the man (known) but F, the
sum of forces acting at the contact point of man and rope cannot be
determined since the tension T1 in the rope is not known. Thus 12*g+T1=
12*A1 is asserted Al, 12 and g are known and Tl is the new unknown. The
focussing algorithm then identifies Tl as the tension in the string dur-
ing the time period, a new queue of equations are proposed and the "res-
olution of forces" equation for the contact point of the rope and weight
solves for Tl with no new unknowns. -10*g-T1=10Al with 12*g+T1=12Al1-
are seen as sufficient to solve the pulley problem.

The tower probiem is slightly more complex in that four simultaneous
equations are needed to solve the problem:
A particle is dropped from the top of a tower. If it takes t
seconds to travel the last h feet to the ground, find the height
of the tower.

UHW%MﬂMmm TIMES VELOCITY
END1 MOM1 ~ ZERO = VEL (MOM1)
DQ1 TQ1
DQ¢ END3 TQ¢ MOM3  VEL2 = VEL (MOM3)
DQ2 TQ2
\}/ END2 MOM2  VEL1 = VEL (MOM2)

FIGURE 2  The representation of .the tower problem created by the
schemata.

The situation is shown in Figure 2. The total height of the tower is H
and H=Hl+h where h is known. Velocity VO is the initial velocity (0),

V1 is the final velocity and V2 the velocity at the end of time T1 and

the beginning of t.

H, the unknown, is identified as the total length of the path of the
falling object, and the Marples' algorithm examines possible equations
for finding H. The equations are given in the appendix, and the progress
of the Marples' algorithm through the problem is given below. When each
equation is asserted a new 1ist of givens and unknowns is prepared and
the Marples' algorithm and focussing is called again (in this problem
four times).

1. given (g,t,h)

unknown (H) - The total height

S
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2. assert H=0*T+z*g*T (No. 6, appendix)
givens (g,t,h,H); unknown (T) - The total time
3. . assert T=T1+t (No. 8, appendix)
givens (g,t,h,H,T); unknown (T1} - The time of top period
4. assert V2=0+g*T1 (No. 5, appendix)
givens Amuﬁu:u:uﬂwapmw unknowns (V2) - The velocity at midpoint
5. assert h=V2*t*+%g*tZ (No. 6, appendix)
givens (g,t,h,H,T,T1,V2); unknowns ( )

The four equations above are seen as independent and sufficient to solve
the problem.

To noqndcam this section, the means-ends analysis implied in the Marples'
mq@@xAﬁsa may be compared to that of The General Problem Solver (Newel1

& Simon, 1963). The equations used by the Marples' algorithm are much
Tike the "table of differences" used by GPS to reduce given-goal dif-
ferences. The focussing technique prepares possible equations for the
goal reduction just as GPS considers different given-goal combinations
from the “table of differences". What is unique about MECHO, is that
this is one of the first applications of means-ends analysis to solving
problems in applied mathematics.

111, FOUR PROTOCOLS OF HUMAN SUBJECTS

In this section parts of four protocols of subjects solving the pulley
and tower problems are presented. The subjects were post-graduate stu-
dents at the University of Edinburgh and all had had some mechanics or
applied mathematics in their undergraduate education.

Protocol A (Pulley problem)

1. Mechanics problem ...

2. We'll treat the man and weight both
as particles ... point masses ... e >

3. So man and zm*m:ﬁu... Man has a wt
force of 12 stone vertically downwards ... _ou _ﬂ»

4. Unknown at the moment ...

5. and assuming this frictionless pulley,
T is the same on both sides ... T .y

6. We'll give the rope an acceleration ... ¥ %)
vertically down on the man's side ...

7. and vertically up on the weight's side ... By

8. So resolving vertically down for the man: 12g - T = 12

9. The vertically downwards acceleration

10.  And the vertically upwards for the weight T - 10g = 10a

11. so the thing requires the acceleration of the man which is a ...

12. So we just eliminate T from these two equations ... etc.

.uu
a

Protocol B (Tower problem)

1. There is a tower, suppose it has height H Toy

2. H is made up of h, the given height T

3. and hl, the unknown portion of the tower I Jn

4. We also know time t H §—

5. Call the total time of falling T, T is made up l w
1

of t plus tl where t1 is the time for the top part.
TITTTTG
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6. I need H and I'm given t and h and g the

acceleration of the object m._v.q»..ﬂ ¢unish
7. T know thatH = hl +h . —Hl_lﬂlr

8. Now to get hl, a distance 5

9. hl equals one half acceleration times tl squared hl=ig*tl

10. and I have an equation with tl1 already T = t1 + t

11. but I still need to find T, the total _time ...

12. Now, for the whole period, H = %g x t2 ) o

13. Reviewing, I have one, two, three, four equations (indicates
each

14. and wuavru and tl are unknowns that should do it ...

Protocol C (Tower problem)

1. T1 is the time the ball crosses D1
2. and T2 the time for D2, but T2 is t ...
3. Now I want D, knowing g is the acceleration
of the ball D = kg T2
and I know T: T= TL +t )
So now I need T1 ... in the top time period
The final velocity ... Call it VM ...
is acceleration times time VM = g x T1
. and now to get VM ...
. The total ammﬁw:nm D ... That won't help ... Dy —™ TL
. The distance h and velocities ...
%. if VF is final velocity VF = VM + g x t DL—2T2
12. and 1 can easily get the final velocity VF: nw|4H
13. Because I've already got T ...

© 0~ O U
.

Protocol D (Tower problem) -

Do this by energy ...

It initially starts with potential energy mg "

where m is the mass of the body m is a constant

we can forget about m, call it 1 ww
gx is the initial potential energy . I
when it reaches height h, it will have potential energy gh 9
and it will have kinetc energy gh

so it will have gx -hx=izve

where v is its velocity at height h ) .

we don't know what height ... what speed it is once it hits

the ground )

sm sm:m to use one of the other constant acceleration ones

vé = ut + 28§ .

we want to ... an equation relating height, velocity and time,
that is . . ) 2

under constant acceleration ah which is S = vt + % at

e e

OWERSNOHO P WN -
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1V, FOCUSSING

In Section II, the Marples' algorithm for MECHO's m@md driven mmmwn:
was presented and compared to GPS means-ends analysis (Newell & Simon,
1963). MECHO's set of possible mpcmdﬁoaw served as a table of connec-
tions for goal reduction and the ﬁon:mmgzm mechanism prepared a queue
of possible equations to make the connections.
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In the Pulley problem above the focussing produced immediate results.
In fact MECHO, Tike the human solver performed very 1ittle search in
coming to the Resolution of Forces formula. Two applications of this
formula and the problem is solved. The Tower problem was much more
interesting. In fact, there are several different sets of simultaneous
equations (and of course permutations within each set) that will solve
the problem. Each solver (B,C,D) produced a different set of equations

m:ammn:oﬁﬂ:mmmmmﬂmQw*ﬁmxma*1o33mn:o.mﬂwwnmoﬁd:m u1m<mocmmmnu
tion. .

In this section the focussing technique and table of connections is
altered in an attempt to produce traces similar to the human protocols
of the tower problem. First note what.will not be changed. The semanti
knowledge for the Tower problem will not be changed. That is, facts suc
as the unknown H the height of the tower and t and h the givens will be
used without change by MECHO throughout this section; similarly V2 will
remain the velocity at the "midpoint". Furthermore, the first part of
focussing that binds situation variables for sought unknowns will remain
unchanged. That is, H will be bound to the LENGTH of the PATH during
the TIME. What will change is the queue of possible equation instantia-
tions for situations and alterations will be made in the equations withi
the table of connections. These latter will be seen shortly.

The 10 clauses below are used to form the queue of formulae to be attemp
ted in any problem situation. Resolve, relative velocity, etc. refer to
the equation names of the Appendix.
1. relates(resolve; FORCE, ACCELERATION, MASS).
2. relates(relative velocity; VELOCITY).
3. relates(relative acceleration; ACCELERATION).
4. relates(constant acceleration-1; ACCELERATION,VELOCITY,DURATION
5. relates(constant acceleration-2; ACCELERATION,LENGTH,VELOCITY,
DURATION).
6. relates(constant acceleration-3; VELOCITY,LENGTH,DURATION).
7. relates(average velocity; VELOCITY,LENGTH,DURATION).
8. relates(constant velocity; VELOCITY,LENGTH,DURATION).
9. relates(Tenthsum; LENGTH).
10. relates(timesum; DURATION). :
After H is recognized as the LENGTH of the path during the episode by th
first step in focussing, the second step prepares the queue by scanning
the 10 clauses above to find which formulae will help solve for LENGTH.
This proposes a queue of constant acceleration-2, constant acceleration
average velocity, and length sum. These equations are tried in that ord
Each, of course, fails because new unknowns are introduced. On the seco
pass, when new unknowns are allowed, constant acceleration-2 is accepted
This process continues until the problem is solved.

We hypothesize that the human subject has a stack of equations that re-
late to specific situations. These equations are employed when attempti
to reduce the given-goal differences in a specific problem. In fact, thi
stack might be quite similar to that produced by the 10 clauses above.
This clause queue like the table of connections need not contain the ful’
equations, only their names. These names may serve to reference the ac-
tual equation formulae which are stored with their full sets of conditios
for instantiation.
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This conjectured implementation of the GPS model may be tested by making
simple alterations in the 10 clauses above to see if the different queue
of equations to be formulated can produce a different set of simultaneous
equations. In particular, we attempt to produce traces similar to the
human protocols B,C, and D.

Subject B used the length sum equation with top priority when solving
for LENGTH, and timesum when a DURATION was sought. Thus, if clause 9
and 10 are placed before the constant acceleration clauses the order of
"relates" above becomes 1, 2, 3, 9, 10, 4, 5, 6, 7, 8. When this re-
arrangement of clauses was run in MECHO the following trace occurred:
B* 1. Attempting to solve for H in terms of g,h,t.
2. H=Hl+h solves for H but introduces HI.
** HI is a LENGTH, Tengthsum cannot be used again, so constant
acceleration-2 is used**
3. IwuoxHH+Wx@*HHN solves for HI but introduces T1
4, T=Ti+t solves for T1 but introduces T
**  constant acceleration-2 is now the first on the queue for T
since timesum may not be used again, and MECHO always tries
to solve without further introduction of unknowns**
5.  H=0*T+3*g*T
6. Egquations 2-5 solve the Tower problem.
If the ZERD term (initial vel. x time) is removed from 3 and 5 these
equations are exactly those produced by subject B above.

In an attempt to produce a trace similar to protocol C, the "relates”
clause (9) for lengthsum is returned to its original position, (i.e.,
1,2, 3,10, 4,5, 6, 7, 8, 9). The subject of protocol C does not use
the constant acceleration-2 equation to its full potential, that is, he
only uses the equation when the initial velocity is zero. Marples (1976)
comments on this use of eaquations by engineering students when he notes
they often apply an equation without knowing its full power. In this
instance, the subject uses constant acceleration-2 for relating accel-
eration, time, and distance and not in its full use of relating initial
velocity, acceleration, time, and distance. If it is conjectured that
this happens with subject C, constant acceleration-2 equation is changed
to this 1imited used by rewriting 5 above to "relates (constant accelera-
tion-2; ACCELERATION,LENGTH,DURATION}" and removing "U*T" from the isform-
ula clause of constant acceleration-2 c.f. appendix

MECHO is now run with these changes and the following trace results:
¢’ . trying to solve for H in terms of g,t,h.
Iuw*m*am solves for H but introduces T.
T=T1+t solves for T but introduces TIl.
VEL2 = ZERQO + g * T1 solves for T1 but introduces VELZ2.
Recall that the final velocity at the bottom is VEL1 and the
velocity at the "midpoint" VEL2. The solver using constant
acceleration-2 properly would now be done. Our subject grinds on**
5, VEL1 = VELZ + g * t solves for VELZ but introduces VELI1.
6. VEL1 = ZERO + g * T solves for VELI.
7. Equations 2-6 solve the Tower problem.
This trace is remarkably similar to protocol C.

* PN
P

N

The subject of protocol D decided tc use energy equations as was explic-
itly stated. This was not expected by the investigator ﬁmx;:@.n«0ﬂonodm
or designing MECHO to solve distance/rate/time problems. But in principle
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there was no reason why energy equations could not be used. They were,

in fact, already in the system and used to solve de Kleer's problems
(Bundy, 1978). A new entry for the "relates" table was constructed:

No. 11. relates (conserve energy; VELOCITY,LENGTH) and this was given
priority over all other LENGTH relation clauses. Further, constant
acceleration-3 is equivalent to conserve energy and was removed. Finally,
subject D favored constant acceleration-2 over constant acceleration-1
formula for solving VELOCITY problems, so this order was changed. The
"relates" 1ist was 1, 2, 3, 4, 10, 11, 6, 8, 9, 5.

MECHO was run in this situation; its trace:
D! 1. Trying to solve for _H in terms of g,t,h.
2. % *VEL1Z - % * ZEROZ = g * H solves for H but introduces VELI
** The energy equation is attempted again. This time to solve for
VEL1**
3. % * VELIZ - A VEL22 = g * t solves for VEL1 but introduces VEL2?
4. h=VEL2 * t +3 * g * t2 solves for VEL?
5. 2-4 solve the Tower problem.
It can be seen that this trace is very close to the protocol of subject D
above. Further comments will be made in the next section.

V. SUMMARY AND CONCLUSIONS

The goal of this paper has been to describe the action of the Marples!®
algorithm in MECHO's solution of pulley and distance/rate/time problems.
After creation of a knowledge base, the Marples' algorithm was invcked
and using means-ends analysis, in many ways similar to GPS, produced sets
of simultaneous equations sufficient for solving the problem.

Experienced human subjects solving the same problems were presented with
strategies for producing sets of simultaneous egquations sufficient to
solve a problem in many ways similar to those of the Marples' algorithm.
Finally, with slight changes the Marples' algorithm could produce sets of
equations almost identical to those produced by the human subjects.

In the pulley probiem the protocol indicates the subject goes immediately
'to the resolution of forces equation. This is used to create the interme-
diate unknown of the tension in the string. Forces are again resolved at
the other end of the string to solve for tension and two simultaneous equa-
tions are produced sufficient to solve the problem. The Marples' algorithm
in MECHO proceeds in exactly the same fashion with the important difference
that the resolution-of-forces equation, the first equation considered, is
rejected because it introduces a new unknown (tension). A1l other equations
in the queue trying to find acceleration for a particle in a time period
are examined and rejected before the return to the resolution-of-forces
equation and introduction of the tension as a new unknown. The difference
between the experienced human and MECHO is obvious and interesting. The
human realizes immediately a new unknown must be introduced, accepts it,
and goes on, while MECHO tries as long as possible to avoid this course of
action. Other than this, the protocol of the human and MECHO's trace are
remarkably similar.

The similarities between trace and protocol are even stronger with the

tower problem where many different sets of simultaneous equations sufficient
for solving the tower problem may be produced. The formation of any set of
these equations depends entirely on the use of the focussing technique, that
is, the queue that is generated for possible equations. The similarity of
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protocol C with the trace of C' of Section IV is striking. Indeed, when

it was hypothesized that if the human subject had been able to use initial
velocity values in constant acceleration-2 equations when the initial vel-
ocity was not zero and had a s1ightly altered focus, then MECHO's trace
would match exactly the protocol of subject C. In section IV, these altera-
tions were made and the resulting protocols compared. The results indicate
the robustness of the Marples' algorithm and focussing to generate different
sets of simultaneous equations to fit closely the traces of the human sub-
Jects.

One of the principal advantages of writing the MECHO problem solver in
PROLOG (Warren, 1978) here represented by predicate Togic assertions, is
that PROLOG actually computes using the predicate Togic statements them-
selves. In fact, PROLOG was designed as a predicate logic theorm prover.
Thus facts, inferences, and default values are entered into the program as
the potential for "meaningful bits of behavior”. This allows such actions
as removing a rule from the program, substituting another rule, or simply
changing the order of the rules and then checking the results of these
changes on the running computer program. Thus a PROLOG "fact", "inference
rule", or "default assignment" may be paired with the corresponding com-
petency in the human subject and the effect of its presence or absence in
the human subject may be simulated by the running program. This can be
seen when the "conservation of energy" equation was added for solution of
the Tower problem (IV). The new rule added resulted in the exhibition of
a new competency, and conversely, the absense of the rule marked the ab-
sense of the related ability.

A modular set of rules also allows general purpose algorithms, such as the
Marpies' algorithm, to be implemented and the effects of the presence of
the algorithm to be seen by running the program. In a very similar fashion
Larkin (1978) and Simon and Simon {1977) can run sets of production rules
in an attempt to simulate the difference of skills in the expert or novice
problem solver.

The presence of production or behavior rules also provides a model for the
interpretation of missing or ambiguous behavior of the human subject. In
D, for example, "Do this by energy" indicates an energy equation will be
called to find the value for H. D5 states "gx is the initial potential

energy” ... and D 6-7 “when it reaches height h it will have potential
energy gh ..." and finally in D 8-9 "so it will have gx - gh = %2 where
V'is the velocity at height h ..." - what does this all mean? The pro-

tocol D2 to D10 is at best confusing. Reading MECHO's trace on the same
problem goes a long way towards making sense of these statements. D'? gives
a full description of gx: "g * H = 3 VEL1%", where g * H is gx_and VEL1
the final velocity. Similarly for gh: D'2 has "g *h + % VEL12 - L <m_.mmU
when VEL2 is the velocity at the top of h. Now simply subtract D'3 from
D'2 and line D9 of the protocol is precisely understood. The subject of
protocol D was a particularly bright individual that Tiked to skip steps
and simplify as he went along. Although MECHO is not able to imitate this
behavior completely - especially the subject's proclivity for short slightly
ambiguous statements - its rule system does give a precise and complete
performance and often provides data sufficient to disambiquate the human
subject's behavior.

There are, of course, many things that MECHO, as presently designed, does
not do that human subjects do quite easily. We have already seen how sub-
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ject D simplified as he went along and omitted “unnecessary” bits of
equations. Similarly, other subjects - this could be easily added to
MECHO- Teft out terms of equations that were zero. Also MECHO is ex-
haustively thorough in its search while human subjects are not, and this
MECHO will never use five equations where four are sufficient. However,
as noted in Section IV, MECHO can offer an explanation of precisely why a
subject needed five equations when four would have been sufficient.
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Appendix: PROLOG clauses for possible equation formation in Pulley and
Tower problems

Note that words with first letter capitalized, e.g., Object or Direction,
as well as single capitol letters, e.g. M or Tl, represent variables.

1. isformula (F = M * A, resolve (Object, Direction, Time)):- mass
(Object, A, Direction, Time), acceleration (Object, A, Direction,
Time), sumforces {Object, Direction, Time, F).

2. isformula {V13 = V123, relative velocity (0bjl, Obj2, 0bj3, Time)):-
relative velocity (0bjl, 0bj2, V12, Dirl2, Time), relative velocity
(0bji, Obj3, V13, Dirl3, Time), vectoradd (V12, Dirl2, V23, Dir23,
Vi23, Dirl3).

3. isformula (A123 = Al123, relative acceleration (0bjl, 0bj2, 0bj3,
Time)):- relative acceleration (0bjl, Obj2, Al2, Dirl2, Time), rel-
ative acceleration (0bj2, Obj3, A23, Dir23, Time), relative acceler-
ation (Objl, 0bj3, Al3, Dirl3, Time), vectoradd (AlZ, Dirl2, A23,
Dir23, A123, Dirl3).

4. isformuia {S = V * T, constant velocity (Object, Time)):- constant
velocity (Object, Time), velocity {(Object, V, Direction, Time),
duration (Time, T), distance {Object, S, Time).

5. jsformula (V = U + (A *T), constant accelerationl (Object, Time)):-
constant acceleration {Object, Time), duration (Time, T), initial
velocity (Object, U, Direction, Time), final velocity (Object, V,
Direction, Time).

6. isformula (S = U * T+ (A * (T:2)/2), constant acceleration2 (Object,

Time)):- constant acceleration (Object, Time), acceleration (Object,

A, Direction, Time), duration (Time, T), initial velocity (Object, U,

Direction, Time), distance (Object, S, Time).

7. isformula ((V:2) + (U:2) = 2 * A * S, constant acceleration3 (object,
Time)):- constant acceleration (Object, A, Direction, Time), distance
(Object, S, Time), initial velocity {Object, U, Direction, Time),
final velocity (Object, V, Direction, Time)}.

8. isformula (T = Sum, timesum (Time)):- Partition (Time, Points),
duration (Time, T), sumdurations (Points, Sum).

9. isformula (D = Sum, lengthsum (Path, Time)):- partition (Path, D,
Time), sumlength (Points, Sum, Time).

10.  disformula (V:2)/2 - (U:2)/2 = g * H, energy (Object, Time)):-
motion (Object, Path, Start, Side, Time), incline (Path, 270, Time),
length (Path, H, Time), final velocity (Object, V, Direction, Time),
initial velocity (Object, U, Direction, Time).

*x g is known by MECHO as the gravitational constant **




